2015 SAE Baja

UGRADS Presentation

Ahmed Alnattar, Zane Cross, Kyle Egan, Nick Garry, Neil Gehr, Trevor Hochhaus,

Ricardo Inzunza, Brandon Janca, Matthew Legg, Ryan Worden

April 24, 2015

Overview

- Project Description
- Customer's Needs
- Constraints
- Goals
- Objectives
- Frame
- Suspension
- Drivetrain
- Cost Analysis
- Conclusion

Project Description

Society of Automotive Engineers (SAE) is hosting a collegiate design competition in which students from different universities design and manufacture a Baja vehicle to compete in five dynamic events.

- Portland, Oregon
- 100 Universities
- Competition Events
 - Maneuverability
 - Suspension
 - \circ Acceleration
 - Hill Climb
 - Endurance
 - Design

Problem Statement

• Design and build a single-seat Baja frame that a fictitious company would want to manufacture. The vehicle will be put through a series of dynamic events that will test the structural integrity, speed, and maneuverability.

Customer's Needs

Customer: Dr. John Tester

- Weight reduction
- Weight distributions cannot exceed a 40 x 60 front to rear ratio
- Must be safe and ergonomic for driver
- Obstacle clearance
- Reverse
- Fits in 5 x 10 ft trailer

Constraints

- All major constraints are within SAE Baja Rules
- Design drivetrain within SAE Baja rules
- Width of vehicle must not exceed 59 in
- Turning radius must be less than 12 ft
- Frame needs to be a maximum of 150 lbf
- Total vehicle weight cannot exceed 450 lbf
- Use provided engine Briggs & Stratton 10 hp OHV Intek
- Possible to manufacture

Goals

- Design and build a lightweight frame that will meet strength, safety, and dimension requirements for SAE Baja Competition(s) and customer needs
- Design to integrate all additional equipment into frame with mounting tabs
- Complete a 100 ft trial in 4 seconds on level dry pavement
- Able to climb an incline of greater than 60 degrees
- Incorporate packaged extras (Glove box, speakers, winch, lights, and body paneling)
- Finish within the top 10 overall

Objectives

- Design and build a lightweight frame (under 150 lbf and a total vehicle weight under 450 lbf)
- Build within a short amount of time (time)
- Strength, via compression testing (lbf/in)
- Minimize track width of vehicle (in)

Completed Baja Vehicle

Designing the Baja Vehicle

- Frame Team
 - Frame
 - Safety
- Suspension
 - Suspension
 - Steering
- Drivetrain
 - \circ Transmission
 - Engine

Frame Design

Initial Frame Concepts

Rear Bracing

Front Bracing

Truck Frame

Volkswagen Bug

Matthew Legg

Front Supported

Wold

Initial Designs

Front Bracing Design

Front Supported Design

Stress Analysis

Four Simulation Studies:

- 1. Rollover Test
- 2. Front Impact
- 3. Rear Impact
- 4. Side Impact

Test Assumptions:

- 1. Vehicle weight of 450 lbf
- 2. Drop height of 10 ft
- 3. Impact velocity of 25 mph
- 4. 0.1 and 0.2 second drop and impact impulse times, respectively

Drop Test

• Applied Equation:

$$F = m \cdot \frac{\sqrt{2gh}}{t} = 2507.752 \ lbf$$

$$F_a = \frac{F}{l}$$

Impact Scenarios

Drop Test

Front Impact Test

Rear Impact Test

Side Impact Test

F.O.S. = 3.7 Max Stress = 18.0 ksi Maximum Displacement = 0.120 inches

Test Results

Test	Max Stress (ksi)	Displacement (in)	F.O.S.
Drop Test	30.3	0.4521	2.2
Front Impact Test	17.1	0.0375	3.9
Rear Impact Test	25.7	0.2431	2.6
Side Impact Test	18.0	0.1196	3.7

Feb 7th

Feb 14th

Feb 14th

Feb 15th

Feb. 21st – 28th

April 12th

Bill of Materials

Material	Quantity	
4130 Chromoly Steel, 1.25 x 0.065 in Primary Round Tubing	90 ft	
4130 Chromoly Steel, 1 x 0.035 in Secondary Round Tubing	30 ft	
1018 Steel, 1 x 1 x 0.065 in Square Tubing	4 ft	
1018 Steel, 3 x 1.5 x 0.0747 in Rectangular Tubing	50 in	
6061 Aluminum Sheet Metal 4 x 4 ft	4	
High Density Polyethylene 3 x 4 ft	1	
Suspension Design

Front Suspension Concepts

Extended A Arms

Torsion Bars

Nick Garry

Rear Suspension Concepts

Double A Arms

2 Link

3 Link

Steering Concepts

Image courtesy of ClearMechanic.com

Rear Mounted Steering

Power Steering

Front Mounted Steering

Final Front Suspension and Steering

Front View

Isometric View

Manufactured Front Suspension

Lower A-Arm

Impact Testing in FEA

Front Impact at 10 mph. F. O.S. is 2.9. Simulates a 5 foot drop on one corner. F.O.S. of 2.8.

Simulates a side impact at 10 mph. F.O.S. of 2.0.

Upper A-Arm

Impact Testing in FEA

Front Impact at 10 mph. F.O.S. is 2.

Simulates a 5 ft drop on one corner. F.O.S. of 8.

Simulates a side impact at 10 mph. F.O.S. of 2.9.

Final Rear Suspension

Manufactured Trailing Arm

Impact Testing in FEA

Simulates a collision at 5mph on one arm. F.O.S. of 1.7 for this simulation.

Simulates a collision with another car at 5mph. The F.O.S. for this simulation was 2.6

Simulates a 5 foot fall on one member. The F.O.S. for this loading is 2.4

Steering Design

Rear Mounted Steering

Purpose for New Hub Mount

Rack and Pinion

Final Track Width and Wheelbase

- Track Width = 53in
- Wheelbase = 75in

Steering Angles

• Inside Tire Max Angle

 $\tan(\delta_i) = \frac{L}{R_1 - \frac{W}{2}}$

• Outside Tire Max Angle

$$\tan(\delta_o) = \frac{L}{R_1 - \frac{W}{2}}$$

- Inside Tire = 38.27 deg
- Outside Tire = 28.18 deg

Final Steering Dimensions

- Rack Location = 2.08 in
- Tie Rod Length = 13.75 in
- Max Rack Travel = 2.45 in
- New Tie Rod Hub Mount (Y) = 4.32 in
- New Tie Rod Hub Mount (X) = 1.93in

Manufacturing of Tie Rods

Completed Suspension and Steering

Suspension Testing

Steering Testing

Transmission Design

Sequential Transmission

Typical Applications:

- Motorcycles
- ATV's
- Race Cars

Advantages:

- Little loss of power
- Lightweight/Compact
- Simple to operate
- Stronger and more reliable

Sequential Dog ring compared to Manual Dog

Drivetrain

Gearbox Casing

Gearbox Internals

Material Choices

- Gears
 - o 7075-T6 Aluminum
- Shafts
 - 4340 Normalized Steel
- Bearings
 - Open Steel Ball Bearings

- Bushings

 Alloy 932 Bronze Flanged
 Sleeve Bearings
- Dog Collars

 1020 Cold Rolled Steel

Gear Ratios and Teeth Numbers

Gear	Pinion Teeth	Gear Teeth	Idler Teeth	Overall Ratio	Transmission Ratio	
Crawler	23	63	N/A	25:1	2.71651:1	
1st	39	47	N/A	11.219:1	1.21906:1	
2nd	43	43	N/A	9.203:1	1:1	
3rd	52	34	N/A	6:1	0.65196:1	
Reverse	23	28	23	11.219:1	1.21906:1	

Gear Layout

Ricardo Inzunza

Manufacturing Gears

Planing gear plates down to 0.5 inches

Cutting Gear Profiles on Tormach CNC Mill

Manufacturing Gear Teeth

(Video of 4 axis CNC machine cutting gear teeth)

Ricardo Inzunza

Testing

Testing Apparatus

Data from Gear Shear Testing

Ricardo Inzunza

Final Products: Gears

Finished Aluminum Gears

- 1/2" thick gears
- Diametral Pitch: 10
- Pressure Angle: 14.5°
- F.O.S. = 15

Aluminum Gears

Final Products: Housing

Block One of Three for Housing

Final Products: Shafts

FEA of Input Shaft

Finished 4340 steel shafts

F.O.S. = 7.8

Final Products: Shifting Mechanisms

Final Products: Dog Collars

Current Vehicle

Cost Analysis

2015 Baja SAE Official Costing Sheet

Lumberjack Racing

	AUB	MAR	ORE
Car Number			91
Total Cost			\$ 11,183.35

#					Vehicle A	Assembly		
to 1			Subassembly Costs		Labor		Subtotal	
ő	Item	Description	Material	Labor	Time(min)	Cost	Material	Labor
1	Engine		\$669.52	\$1,019.70		\$0.00	\$669.52	\$1,019.70
2	Transmission		\$176.95	\$210.00		\$0.00	\$176.95	\$210.00
3	Drive Train		\$143.42	\$697.50		\$0.00	\$143.42	\$697.50
4	Steering		\$1,485.20	\$75.90		\$0.00	\$1,485.20	\$75.90
5	Suspension		\$2,133.28	\$403.80		\$0.00	\$2,133.28	\$403.80
6	Frame		\$154.50	\$481.40	\geq	\geq	\$154.50	\$481.40
7	Body		\$128.74	\$177.80		\$0.00	\$128.74	\$177.80
8	Brakes		\$1,596.39	\$30.80		\$0.00	\$1,596.39	\$30.80
9	Safety Equipment		\$904.63	\$140.00		\$0.00	\$904.63	\$140.00
10	Electrical Equipment		\$292.43	\$74.80		\$0.00	\$292.43	\$74.80
11	Fasteners		\$85.43	$>\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$		\$0.00	\$85.43	\$0.00
12	Miscellaneous		\$95.33	\$5.83		\$0.00	\$95.33	\$5.83
13	AUB Event		\$0.00	\$0.00		\$0.00	\$0.00	\$0.00
14	MAR Event		\$0.00	\$0.00	Section States	\$0.00	\$0.00	\$0.00
15	ORE Event		\$0.00	\$0.00	and the second	\$0.00	\$0.00	\$0.00
		AUB Total:	\$ 7,865.82	\$ 3,317.53		\$ -	\$ 7,865.82	\$ 3,317,53
		MAR Total:	\$ 7,865.82	\$ 3,317.53	Carlo de Carlo	\$ -	\$ 7,865.82	\$ 3,317.53
		ORE Total:	\$ 7,865.82	\$ 3,317.53	0	\$ -	\$ 7,865.82	\$ 3,317,53

Team Captain: Recardo diging Date: 2/18/2015 Approval: Jeremy Vetoli Date: 2/18/2015

Level 1 Summary

Revision: 2015 Rev B

Conclusion

- NAU SAE Baja competition team
- Frame is now at the projected weight of 150 lbf and meets SAE safety criterion
- Suspension allows for 14 inches of ground clearance and 6 inches of travel
- Turning radius of 11 ft with 12-to-1 rack ratio and 1.5 turns of the steering wheel lock-to-lock
- Drivetrain is lightweight and is optimized for the hill climb and acceleration challenges by using 4 different forward gear ratios
- Reverse is implemented into drivetrain for better versatility
- The team will participate in collegiate competition on May 30th in Portland Oregon
References

- SAE Design and Analysis Project with SolidWorks Software
- <u>http://www.superatv.com/Polaris-Ranger-XP-900-6-Lift-Kit-P8182.aspx</u>, access 2014.
- http://socalbajas.com/, access 2014.
- Introduction to Finite Element Analysis and Design
- <u>http://www.youtube.com/watch?v=gAwVya8AfyM</u>
- 2015 Collegiate Design Series Baja SAE® Rules
- Structural Considerations of a Baja SAE Frame
- NAU SAE Baja 2013-2014

References

- <u>http://www.desertkarts.com</u>, access 2014.
- 11_0_0_Steering_Theroy.pdf
- Introduction to Finite Element Analysis and Design K. Nam-Ho, "Introduction to Finite Element Analysis and Design" 2008, Wiley.
- **2015 Collegiate Design Series Baja SAE® Rules** SAE International, "2015 Collegiate Design Series Baja SAE Rules" 2014, 2014.
- Structural Considerations of a Baja SAE Frame A. T. Owens, "Structural considerations of a baja SAE frame," 2006-12-05, 2006.
- NAU SAE Baja 2013-2014

Sponsors

INDUSTRIAL METAL SUPPLY CO. metal made easy

Questions?